Thermodynamic properties of the four-dimensional cross-polytope model, the 16-cell model, which is an example of higher dimensional generalizations of the octahedron model, are studied on the square lattice. By means of the corner transfer matrix renormalization group (CTMRG) method, presence of the first-order phase transition is confirmed. The latent heat is estimated to be $L_4^{~} = 0.3172$, which is larger than that of the octahedron model $L_3^{~} = 0.0516$. The result suggests that the latent heat increases with the internal dimension $n$ when the higher-dimensional series of the cross-polytope models is considered.