We analyze possible singularities in the $J/psi Lambda$ invariant mass distribution of the $Xi^-_{b}~to~K^- J/psi Lambda$ process via triangle loop diagrams. Triangle singularities in the physical region are found in 18 different triangle loop diagrams. Among those with $Xi^*$-charmonium-$Lambda$ intermediate states, the one from the $chi_{c1} Xi(2120) Lambda$ loop, which is located around 4628 MeV, is found the most likely to cause observable effects. One needs $S$- and $P$-waves in $chi_{c1} Lambda$ and $J/psi Lambda$ systems, respectively, when the quantum numbers of these systems are $1/2^+$ or $3/2^+$. When the quantum numbers of the $Xi(2120)$ are $J^P=1/2^+$, $1/2^-$ or $3/2^+$, the peak structure should be sharper than the other $J^P$ choices. This suggests that although the whole strength is unknown, we should pay attention to the contributions from the $Xi^*$-charmonium-$Lambda$ triangle diagram if structures are observed in the $J/psi Lambda$ invariant mass spectrum experimentally. In addition, a few triangle diagrams with the $D_{s1}^*(2700)$ as one of the intermediate particles can also produce singularities in the $J/psiLambda$ distribution, but at higher energies above 4.9 GeV.