Raman scattering investigation of the pressure induced structural phase transition in LaCrO3


الملخص بالإنكليزية

We report the pressure dependence of perovskite distortions in rare-earth (R) orthochromites (RCrO3) probed using Raman scattering in order to investigate the origin of structural transition from orthorhombic Pnma to rhombohedral R-3C phase in LaCrO3. The pressure induced changes in octahedral tilt modes demonstrates that tilt distortions are suppressed in LaCrO3 and are enhanced in the remaining members of RCrO3 family. This crossover between the two opposite pressure behaviors occurs at a critical R-ion radius of 1.20 {AA}. We attempted to establish the relation between this unusual crossover and compressibility at Cr- and R-sites by probing Raman phonon modes sensitive to the mean bond strength of Cr-O and R-O respectively. Finally, we study the bond-length splitting of both CrO6 and RO12 polyhedra to ascertain the role of polyhedral self distortion in determining the pressure dependent evolution of perovskite distortions.

تحميل البحث