From Lieb-Thirring inequalities to spectral enclosures for the damped wave equation


الملخص بالإنكليزية

Using a correspondence between the spectrum of the damped wave equation and non-self-adjoint Schroedinger operators, we derive various bounds on complex eigenvalues of the former. In particular, we establish a sharp result that the one-dimensional damped wave operator is similar to the undamped one provided that the L^1 norm of the (possibly complex-valued) damping is less than 2. It follows that these small dampings are spectrally undetectable.

تحميل البحث