$mathcal Z$-stability of $mathrm{C}(X)rtimesGamma$


الملخص بالإنكليزية

Let $(X, Gamma)$ be a free and minimal topological dynamical system, where $X$ is a separable compact Hausdorff space and $Gamma$ is a countable infinite discrete amenable group. It is shown that if $(X, Gamma)$ has the Uniform Rokhlin Property and Cuntz comparison of open sets, then $mathrm{mdim}(X, Gamma)=0$ implies that $(mathrm{C}(X) rtimesGamma)otimesmathcal Z cong mathrm{C}(X) rtimesGamma$, where $mathrm{mdim}$ is the mean dimension and $mathcal Z$ is the Jiang-Su algebra. In particular, in this case, $mathrm{mdim}(X, Gamma)=0$ implies that the C*-algebra $mathrm{C}(X) rtimesGamma$ is classified by the Elliott invariant.

تحميل البحث