Optimal Combination of Linear and Spectral Estimators for Generalized Linear Models


الملخص بالإنكليزية

We study the problem of recovering an unknown signal $boldsymbol x$ given measurements obtained from a generalized linear model with a Gaussian sensing matrix. Two popular solutions are based on a linear estimator $hat{boldsymbol x}^{rm L}$ and a spectral estimator $hat{boldsymbol x}^{rm s}$. The former is a data-dependent linear combination of the columns of the measurement matrix, and its analysis is quite simple. The latter is the principal eigenvector of a data-dependent matrix, and a recent line of work has studied its performance. In this paper, we show how to optimally combine $hat{boldsymbol x}^{rm L}$ and $hat{boldsymbol x}^{rm s}$. At the heart of our analysis is the exact characterization of the joint empirical distribution of $(boldsymbol x, hat{boldsymbol x}^{rm L}, hat{boldsymbol x}^{rm s})$ in the high-dimensional limit. This allows us to compute the Bayes-optimal combination of $hat{boldsymbol x}^{rm L}$ and $hat{boldsymbol x}^{rm s}$, given the limiting distribution of the signal $boldsymbol x$. When the distribution of the signal is Gaussian, then the Bayes-optimal combination has the form $thetahat{boldsymbol x}^{rm L}+hat{boldsymbol x}^{rm s}$ and we derive the optimal combination coefficient. In order to establish the limiting distribution of $(boldsymbol x, hat{boldsymbol x}^{rm L}, hat{boldsymbol x}^{rm s})$, we design and analyze an Approximate Message Passing (AMP) algorithm whose iterates give $hat{boldsymbol x}^{rm L}$ and approach $hat{boldsymbol x}^{rm s}$. Numerical simulations demonstrate the improvement of the proposed combination with respect to the two methods considered separately.

تحميل البحث