A number of epidemics, including the SARS-CoV-1 epidemic of 2002-2004, have been known to exhibit superspreading, in which a small fraction of infected individuals is responsible for the majority of new infections. The existence of superspreading implies a fat-tailed distribution of infectiousness (new secondary infections caused per day) among different individuals. Here, we present a simple method to estimate the variation in infectiousness by examining the variation in early-time growth rates of new cases among different subpopulations. We use this method to estimate the mean and variance in the infectiousness, $beta$, for SARS-CoV-2 transmission during the early stages of the pandemic within the United States. We find that $sigma_beta/mu_beta gtrsim 3.2$, where $mu_beta$ is the mean infectiousness and $sigma_beta$ its standard deviation, which implies pervasive superspreading. This result allows us to estimate that in the early stages of the pandemic in the USA, over 81% of new cases were a result of the top 10% of most infectious individuals.