Discovery of a Cooper-Pair Density Wave State in a Transition-Metal Dichalcogenide


الملخص بالإنكليزية

Pair density wave (PDW) states are defined by a spatially modulating superconductive order-parameter. To search for such states in transition metal dichalcogenides (TMD) we use high-speed atomic-resolution scanned Josephson-tunneling microscopy (SJTM). We detect a PDW state whose electron-pair density and energy-gap modulate spatially at the wavevectors of the preexisting charge density wave (CDW) state. The PDW couples linearly to both the s-wave superconductor and to the CDW, and exhibits commensurate domains with discommensuration phase-slips at the boundaries, conforming to those of the lattice-locked commensurate CDW. Nevertheless, we find a global $deltaPhi sim pm2pi/3$ phase difference between the PDW and CDW states, possibly owing to the Cooper-pair wavefunction orbital content. Our findings presage pervasive PDW physics in the many other TMDs that sustain both CDW and superconducting states.

تحميل البحث