An analytic model for OIII fine structure emission from high redshift galaxies


الملخص بالإنكليزية

Recent ALMA measurements have revealed bright OIII 88 micron line emission from galaxies during the Epoch of Reionization (EoR) at redshifts as large as $z sim 9$. We introduce an analytic model to help interpret these and other upcoming OIII 88 micron measurements. Our approach sums over the emission from discrete Str$ddot{mathrm{o}}$mgren spheres and considers the total volume of ionized hydrogen in a galaxy of a given star-formation rate. We estimate the relative volume of doubly-ionized oxygen and ionized hydrogen and its dependence on the spectrum of ionizing photons. We then calculate the level populations of OIII ions in different fine-structure states for HII regions of specified parameters. In this simple model, a galaxys OIII 88 micron luminosity is determined by: the typical number density of free electrons in HII regions ($n_e$), the average metallicity of these regions ($Z$), the rate of hydrogen ionizing photons emitted ($Q_{mathrm{HI}}$), and the shape of the ionizing spectrum. We cross-check our model by comparing it with detailed CLOUDY calculations, and find that it works to better than 15$%$ accuracy across a broad range of parameter space. Applying our model to existing ALMA data at $z sim 6-9$, we derive lower bounds on the gas metallicity and upper bounds on the gas density in the HII regions of these galaxies. These limits vary considerably from galaxy to galaxy, with the tightest bounds indicating $Z gtrsim 0.5 Z_odot$ and $n_{mathrm{H}} lesssim 50$ cm$^{-3}$ at $2-sigma$ confidence.

تحميل البحث