A Hybrid Approach to Audio-to-Score Alignment


الملخص بالإنكليزية

Audio-to-score alignment aims at generating an accurate mapping between a performance audio and the score of a given piece. Standard alignment methods are based on Dynamic Time Warping (DTW) and employ handcrafted features. We explore the usage of neural networks as a preprocessing step for DTW-based automatic alignment methods. Experiments on music data from different acoustic conditions demonstrate that this method generates robust alignments whilst being adaptable at the same time.

تحميل البحث