Two-neutron transfer reactions as a tool to study the interplay between shape coexistence and quantum phase transitions


الملخص بالإنكليزية

The goal of this study is to find an observable that could distinguish between both phenomena, shape coexistence and quantum phase transitions. The selected observable to be analyzed is the two-neutron transfer intensity between the 0+ states in the parent and daughter nuclei. The framework in which the study is done is the Interacting Boson Model (IBM), including its version with configuration mixing (IBM-CM). In order to generate the wave functions of the isotope chains of interest, needed for calculating transfer intensities, previous systematic studies with IBM and IBM-CM are taken without changing the parameters. Results for two-neutron transfer intensities are presented for Zr, Hg and Pt isotopic chains using IBM-CM and, moreover, the same is done for Zr, Pt and Sm isotopic chains using IBM with just a single configuration, i.e., without using configuration mixing. In the case of Zr, the two-neutron transfer intensities between the ground states provide a clear observable indicating that normal and intruder configurations coexist in the low-lying spectrum and that they cross at A=98->100, and this could allow to disentangle whether or not shape coexistence is inducing a given QPT. In the case of Pt, where shape coexistence is present and the regular and the intruder configurations cross for the ground state, there is almost no influence in the value of the two-neutron transfer, neither in the case of Hg where the ground state always has regular nature. For the Sm isotope chain that is one of the quantum phase transition paradigms, the value of the two-neutron transfer is strongly affected.

تحميل البحث