Product Title Generation for Conversational Systems using BERT


الملخص بالإنكليزية

Through recent advancements in speech technology and introduction of smart devices, such as Amazon Alexa and Google Home, increasing number of users are interacting with applications through voice. E-commerce companies typically display short product titles on their webpages, either human-curated or algorithmically generated, when brevity is required, but these titles are dissimilar from natural spoken language. For example, Lucky Charms Gluten Free Break-fast Cereal, 20.5 oz a box Lucky Charms Gluten Free is acceptable to display on a webpage, but a 20.5 ounce box of lucky charms gluten free cereal is easier to comprehend over a conversational system. As compared to display devices, where images and detailed product information can be presented to users, short titles for products are necessary when interfacing with voice assistants. We propose a sequence-to-sequence approach using BERT to generate short, natural, spoken language titles from input web titles. Our extensive experiments on a real-world industry dataset and human evaluation of model outputs, demonstrate that BERT summarization outperforms comparable baseline models.

تحميل البحث