While Diffusion Monte Carlo (DMC) is in principle an exact stochastic method for textit{ab initio} electronic structure calculations, in practice the fermionic sign problem necessitates the use of the fixed-node approximation and trial wavefunctions with approximate nodes (or zeros) must be used. This approximation introduces a variational error in the energy that potentially can be tested and systematically improved. Here, we present a computational method that produces trial wavefunctions with systematically improvable nodes for DMC calculations of periodic solids. These trial wavefunctions are efficiently generated with the configuration interaction using a perturbative selection made iteratively (CIPSI) method. A simple protocol in which both exact and approximate results for finite supercells are used to extrapolate to the thermodynamic limit is introduced.