RGS Observations of Ejecta Knots in Tychos Supernova Remnant


الملخص بالإنكليزية

We present results from {it XMM-Newton/RGS} observations of prominent knots in the southest portion of Tychos supernova remnant, known to be the remnant of a Type Ia SN in 1572 C.E. By dispersing the photons from these knots out of the remnant with very little emission in front of or behind them, we obtained the nearly uncontaminated spectra of the knots. In the southernmost knot, the RGS successfully resolved numerous emission lines from Si, Ne, O He$alpha$ and Ly$alpha$, and Fe L-shell. This is the first clear detection of O lines in Tychos SNR. Line broadening was measured to be $sim 3$ eV for the O He$alpha$ and $sim 4.5$ eV for Fe L lines. If we attribute the broadening to pure thermal Doppler effects, then we obtain kT$_{O}$ and kT$_{Fe}$ to be $sim 400$ keV and 1.5 MeV, respectively. These temperatures can be explained by heating in a reverse shock with a shock velocity of $sim 3500$ km s$^{-1}$. The abundances obtained from fitting the RGS and MOS data together imply substantially elevated amounts of these materials, confirming previous studies that the knots are heated by a reverse shock, and thus contain ejecta material from the supernova. We are unable to find a Type Ia explosion model that reproduces these abundances, but this is likely the result of this knot being too small to extrapolate to the entire remnant.

تحميل البحث