Front-end control system and precise threshold configuration of the v-Angra experiment


الملخص بالإنكليزية

The v-Angra experiment aims to estimate the flux of antineutrino particles coming out from the Angra II nuclear reactor. Such flux is proportional to the thermal power released in the fission process and therefore can be used to infer the quantity of fuel that has been burned during a certain period. To do so, the v-Angra Collaboration has developed an antineutrino detector and a complete acquisition system to readout and store the signals generated by its sensors. The entire detection system has been installed inside a container laboratory placed beside the dome of the nuclear reactor, in a restricted zone of the Angra II site. The system is supposed to work standalone for a few years in order to collect enough data so that the experiment can be validated. The detectors readout electronics and its environmental conditions are crucial parts of the experiment and they should work autonomously and be controlled and monitored remotely. Additionally, threshold configuration is a central issue of the experiment since antineutrino particles produce low energy signals in the detector, being necessary to carefully adjust it for all the detector channels in order to make the system capable of detecting signals as low as those generated by single photons. To this end, an embedded system was developed and integrated to the detection apparatus installed in the container at the Angra II site and is now operational and accessible to the v-Angra Collaboration. This article aims at describing the proposed embedded system and presenting the results obtained during its commissioning phase.

تحميل البحث