A finite box as a tool to distinguish free quarks from confinement at high temperatures


الملخص بالإنكليزية

Above the pseudocritical temperature T_c of chiral symmetry restoration a chiral spin symmetry (a symmetry of the color charge and of electric confinement) emerges in QCD. This implies that QCD is in a confining mode and there are no free quarks. At the same time correlators of operators constrained by a conserved current behave as if quarks were free. This explains observed fluctuations of conserved charges and the absence of the rho-like structures seen via dileptons. An independent evidence that one is in a confining mode is very welcome. Here we suggest a new tool how to distinguish free quarks from a confining mode. If we put the system into a finite box, then if the quarks are free one necessarily obtains a remarkable diffractive pattern in the propagator of a conserved current. This pattern is clearly seen in a lattice calculation in a finite box and it vanishes in the infinite volume limit as well as in the continuum. In contrast, the full QCD calculations in a finite box show the absence of the diffractive pattern implying that the quarks are confined.

تحميل البحث