Rainbow odd cycles


الملخص بالإنكليزية

We prove that every family of (not necessarily distinct) odd cycles $O_1, dots, O_{2lceil n/2 rceil-1}$ in the complete graph $K_n$ on $n$ vertices has a rainbow odd cycle (that is, a set of edges from distinct $O_i$s, forming an odd cycle). As part of the proof, we characterize those families of $n$ odd cycles in $K_{n+1}$ that do not have any rainbow odd cycle. We also characterize those families of $n$ cycles in $K_{n+1}$, as well as those of $n$ edge-disjoint nonempty subgraphs of $K_{n+1}$, without any rainbow cycle.

تحميل البحث