Memoryless Algorithms for the Generalized $k$-server Problem on Uniform Metrics


الملخص بالإنكليزية

We consider the generalized $k$-server problem on uniform metrics. We study the power of memoryless algorithms and show tight bounds of $Theta(k!)$ on their competitive ratio. In particular we show that the textit{Harmonic Algorithm} achieves this competitive ratio and provide matching lower bounds. This improves the $approx 2^{2^k}$ doubly-exponential bound of Chiplunkar and Vishwanathan for the more general setting of uniform metrics with different weights.

تحميل البحث