Asymptotically Optimal Vertex Ranking of Planar Graphs


الملخص بالإنكليزية

A (vertex) $ell$-ranking is a labelling $varphi:V(G)tomathbb{N}$ of the vertices of a graph $G$ with integer colours so that for any path $u_0,ldots,u_p$ of length at most $ell$, $varphi(u_0) eqvarphi(u_p)$ or $varphi(u_0)<max{varphi(u_0),ldots,varphi(u_p)}$. We show that, for any fixed integer $ellge 2$, every $n$-vertex planar graph has an $ell$-ranking using $O(log n/logloglog n)$ colours and this is tight even when $ell=2$; for infinitely many values of $n$, there are $n$-vertex planar graphs, for which any 2-ranking requires $Omega(log n/logloglog n)$ colours. This result also extends to bounded genus graphs. In developing this proof we obtain optimal bounds on the number of colours needed for $ell$-ranking graphs of treewidth $t$ and graphs of simple treewidth $t$. These upper bounds are constructive and give $O(nlog n)$-time algorithms. Additional results that come from our techniques include new sublogarithmic upper bounds on the number of colours needed for $ell$-rankings of apex minor-free graphs and $k$-planar graphs.

تحميل البحث