Linking axion-like dark matter, the XENON1T excess, inflation and the tiny active neutrino masses


الملخص بالإنكليزية

We consider a renormalizable theory, which successfully explains the number of Standard Model (SM) fermion families and whose non-SM scalar sector includes an axion dark matter as well as a field responsible for cosmological inflation. In such theory, the axion gets its mass via radiative corrections at one-loop level mediated by virtual top quark, right handed Majorana neutrinos and SM gauge bosons. Its mass is obtained in the range $4$ keV$div$ $40$ keV, consistent with the one predicted by XENON1T experiment, when the right handed Majorana neutrino mass is varied from $100$ GeV up to $350$ GeV, thus implying that the light active neutrino masses are generated from a low scale type I seesaw mechanism. Furthermore, the theory under consideration can also successfully accommodates the XENON1T excess provided that the PQ symmetry is spontaneously broken at the $10^{10}$ GeV scale.

تحميل البحث