A locally convex space (lcs) $E$ is said to have an $omega^{omega}$-base if $E$ has a neighborhood base ${U_{alpha}:alphainomega^omega}$ at zero such that $U_{beta}subseteq U_{alpha}$ for all $alphaleqbeta$. The class of lcs with an $omega^{omega}$-base is large, among others contains all $(LM)$-spaces (hence $(LF)$-spaces), strong duals of distinguished Frechet lcs (hence spaces of distributions $D(Omega)$). A remarkable result of Cascales-Orihuela states that every compact set in a lcs with an $omega^{omega}$-base is metrizable. Our main result shows that every uncountable-dimensional lcs with an $omega^{omega}$-base contains an infinite-dimensional metrizable compact subset. On the other hand, the countable-dimensional space $varphi$ endowed with the finest locally convex topology has an $omega^omega$-base but contains no infinite-dimensional compact subsets. It turns out that $varphi$ is a unique infinite-dimensional locally convex space which is a $k_{mathbb{R}}$-space containing no infinite-dimensional compact subsets. Applications to spaces $C_{p}(X)$ are provided.