Nanometer scale resolution, multi-channel separation of spherical particles in a rocking ratchet with increasing barrier heights


الملخص بالإنكليزية

We present a nanoparticle size-separation device based on a nanofluidic rocking Brownian motor. It features a ratchet-shaped electrostatic particle potential with increasing barrier heights along the particle transport direction. The sharp drop of the particle current with barrier height is exploited to separate a particle suspension into multiple sub-populations. By solving the Fokker--Planck equation, we show that the physics of the separation mechanism is governed by the energy landscape under forward tilt of the ratchet. For a given device geometry and sorting duration, the applied force is thus the only tunable parameter to increase the separation resolution. For the experimental conditions of 3.5 V applied voltage and 20 s sorting, we predict a separation resolution of $sim 2$ nm, supported by experimental data for separating spherical gold particles of nominal 80 and 100 nm diameters.

تحميل البحث