In this paper, by the Hasse-Weil bound, we determine the necessary and sufficient condition on coefficients $a_1,a_2,a_3inmathbb{F}_{2^n}$ with $n=2m$ such that $f(x) = {x}^{3cdot2^m} + a_1x^{2^{m+1}+1} + a_2 x^{2^m+2} + a_3x^3$ is an APN function over $mathbb{F}_{2^n}$. Our result resolves the first half of an open problem by Carlet in International Workshop on the Arithmetic of Finite Fields, 83-107, 2014.