On self-gravitating strange dark matter halos around galaxies


الملخص بالإنكليزية

A new family of nonrelativistic, Newtonian, non-quantum equilibrium configurations describing galactic halos is introduced, by considering strange quark matter conglomerates with masses larger than about 8 GeV as new possible components of the dark matter. Originally introduced to explain the state of matter in neutron stars, such conglomerates may also form in the high-density and temperature conditions of the primordial Universe and then decouple from ordinary baryonic matter, providing the fundamental components of dark matter for the formation of pristine gravitational potential wells and the subsequent evolution of cosmic structures. The obtained results for halo mass and radius are consistent with the rotational velocity curve observed in the Galaxy. Additionally, the average density of such dark matter halos is similar to that derived for halos of dwarf spheroidal galaxies, which can therefore be interpreted as downscal

تحميل البحث