A three-wave mixing kinetic inductance traveling-wave amplifier with near-quantum-limited noise performance


الملخص بالإنكليزية

We present a theoretical model and experimental characterization of a microwave kinetic inductance traveling-wave amplifier (KIT), whose noise performance, measured by a shot-noise tunnel junction (SNTJ), approaches the quantum limit. Biased with a dc current, the KIT operates in a three-wave mixing fashion, thereby reducing by several orders of magnitude the power of the microwave pump tone and associated parasitic heating compared to conventional four-wave mixing KIT devices. It consists of a 50 Ohms artificial transmission line whose dispersion allows for a controlled amplification bandwidth. We measure $16.5^{+1}_{-1.3}$ dB of gain across a 2 GHz bandwidth with an input 1 dB compression power of -63 dBm, in qualitative agreement with theory. Using a theoretical framework that accounts for the SNTJ-generated noise entering both the signal and idler ports of the KIT, we measure the system-added noise of an amplification chain that integrates the KIT as the first amplifier. This system-added noise, $3.1pm0.6$ quanta (equivalent to $0.66pm0.15$ K) between 3.5 and 5.5 GHz, is the one that a device replacing the SNTJ in that chain would see. This KIT is therefore suitable to read large arrays of microwave kinetic inductance detectors and promising for multiplexed superconducting qubit readout.

تحميل البحث