Ultralong carrier lifetime of topological edge states in a-Bi4Br4


الملخص بالإنكليزية

The rising of quantum spin Hall insulators (QSHI) in two-dimensional (2D) systems has been attracting significant interest in current research, for which the 1D helical edge states, a hallmark of QSHI, are widely expected to be a promising platform for next-generation optoelectronics. However, the dynamics of the 1D edge states has not yet been experimentally addressed. Here, we report the observation of optical response of the topological helical edge states in a-Bi4Br4, using the infrared-pump infrared-probe microscopic spectroscopy. Remarkably, we observe that the carrier lifetime of the helical edge states reaches nanosecond-scale at room temperature, which is about 2 - 3 orders longer than that of most 2D topological surface states and is even comparable with that of the well developed optoelectronics semiconductors used in modern industry. The ultralong carrier lifetime of the topological edge states may be attributed to their helical and 1D nature. Our findings not only provide an ideal material for further investigations of the carrier dynamics of 1D helical edge states but also pave the way for its application in optoelectronics.

تحميل البحث