Crowded transport within networked representations of complex geometries


الملخص بالإنكليزية

Transport in crowded, complex environments occurs across many spatial scales. Geometric restrictions can hinder the motion of individuals and, combined with crowding between individuals, can have drastic effects on global transport phenomena. However, in general, the interplay between crowding and geometry in complex real-life environments is poorly understood. Existing analytical methodologies are not always readily extendable to heterogeneous environments: in these situations predictions of crowded transport behaviour within heterogeneous environments rely on computationally intensive mesh-based approaches. Here, we take a different approach by employing networked representations of complex environments to provide an efficient framework within which the interactions between networked geometry and crowding can be explored. We demonstrate how the framework can be used to: extract detailed information at the level of the whole population or an individual within it; identify the topological features of environments that enable accurate prediction of transport phenomena; and, provide insights into the design of optimal environments.

تحميل البحث