Entanglement Entropy of Fermions from Wigner Functions: Excited States and Open Quantum Systems


الملخص بالإنكليزية

We formulate a new ``Wigner characteristics based method to calculate entanglement entropies of subsystems of Fermions using Keldysh field theory. This bypasses the requirements of working with complicated manifolds for calculating R{e}nyi entropies for many body systems. We provide an exact analytic formula for R{e}nyi and von-Neumann entanglement entropies of non-interacting open quantum systems, which are initialised in arbitrary Fock states. We use this formalism to look at entanglement entropies of momentum Fock states of one-dimensional Fermions. We show that the entanglement entropy of a Fock state can scale either logarithmically or linearly with subsystem size, depending on whether the number of discontinuities in the momentum distribution is smaller or larger than the subsystem size. This classification of states in terms number of blocks of occupied momenta allows us to analytically estimate the number of critical and non-critical Fock states for a particular subsystem size. We also use this formalism to describe entanglement dynamics of an open quantum system starting with a single domain wall at the center of the system. Using entanglement entropy and mutual information, we understand the dynamics in terms of coherent motion of the domain wall wavefronts, creation and annihilation of domain walls and incoherent exchange of particles with the bath.

تحميل البحث