Superconductivity from buckled-honeycomb-vacancy ordering


الملخص بالإنكليزية

Vacancies are prevalent and versatile in solid-state physics and materials science. The role of vacancies in strongly correlated materials, however, remains uncultivated until now. Here, we report the discovery of an unprecedented vacancy state forming an extended buckled-honeycomb-vacancy (BHV) ordering in Ir$_{16}$Sb$_{18}$. Superconductivity emerges by suppressing the BHV ordering through squeezing of extra Ir atoms into the vacancies or isovalent Rh substitution. The phase diagram on vacancy ordering reveals the superconductivity competes with the BHV ordering. Further theoretical calculations suggest that this ordering originates from a synergistic effect of the vacancy formation energy and Fermi surface nesting with a wave vector of (1/3, 1/3, 0). The buckled structure breaks the crystal inversion symmetry and can mostly suppress the density of states near the Fermi level. The peculiarities of BHV ordering highlight the importance of correlated vacancies and may serve as a paradigm for exploring other non-trivial excitations and quantum criticality.

تحميل البحث