An approach to synaptic learning for autonomous motor control


الملخص بالإنكليزية

In the realm of motor control, artificial agents cannot match the performance of their biological counterparts. We thus explore a neural control architecture that is both biologically plausible, and capable of fully autonomous learning. The architecture consists of feedback controllers that learn to achieve a desired state by selecting the errors that should drive them. This selection happens through a family of differential Hebbian learning rules that, through interaction with the environment, can learn to control systems where the error responds monotonically to the control signal. We next show that in a more general case, neural reinforcement learning can be coupled with a feedback controller to reduce errors that arise non-monotonically from the control signal. The use of feedback control reduces the complexity of the reinforcement learning problem, because only a desired value must be learned, with the controller handling the details of how it is reached. This makes the function to be learned simpler, potentially allowing to learn more complex actions. We discuss how this approach could be extended to hierarchical architectures.

تحميل البحث