Measures of space-time non-separability of electromagnetic pulses


الملخص بالإنكليزية

Electromagnetic pulses are typically treated as space-time (or space-frequency) separable solutions of Maxwells equations, where spatial and temporal (spectral) dependence can be treated separately. In contrast to this traditional viewpoint, recent advances in structured light and topological optics have highlighted the non-trivial wave-matter interactions of pulses with complex topology and space-time non-separable structure, as well as their potential for energy and information transfer. A characteristic example of such a pulse is the Flying Doughnut (FD), a space-time non-separable toroidal few-cycle pulse with links to toroidal and non-radiating (anapole) excitations in matter. Here, we propose a quantum-mechanics-inspired methodology for the characterization of space-time non-separability in structured pulses. In analogy to the non-separability of entangled quantum systems, we introduce the concept of space-spectrum entangled states to describe the space-time non-separability of classical electromagnetic pulses and develop a method to reconstruct the corresponding density matrix by state tomography. We apply our method to the FD pulse and obtain the corresponding fidelity, concurrence, and entanglement of formation. We demonstrate that such properties dug out from quantum mechanics quantitatively characterize the evolution of the general spatiotemporal structured pulse upon propagation.

تحميل البحث