Elliptic R-matrices and Feigin and Odesskiis elliptic algebras


الملخص بالإنكليزية

The algebras $Q_{n,k}(E,tau)$ introduced by Feigin and Odesskii as generalizations of the 4-dimensional Sklyanin algebras form a family of quadratic algebras parametrized by coprime integers $n>kge 1$, a complex elliptic curve $E$, and a point $tauin E$. The main result in this paper is that $Q_{n,k}(E,tau)$ has the same Hilbert series as the polynomial ring on $n$ variables when $tau$ is not a torsion point. We also show that $Q_{n,k}(E,tau)$ is a Koszul algebra, hence of global dimension $n$ when $tau$ is not a torsion point, and, for all but countably many $tau$, it is Artin-Schelter regular. The proofs use the fact that the space of quadratic relations defining $Q_{n,k}(E,tau)$ is the image of an operator $R_{tau}(tau)$ that belongs to a family of operators $R_{tau}(z):mathbb{C}^notimesmathbb{C}^ntomathbb{C}^notimesmathbb{C}^n$, $zinmathbb{C}$, that (we will show) satisfy the quantum Yang-Baxter equation with spectral parameter.

تحميل البحث