Natural hyperbolic two-dimensional systems are a fascinating class of materials that could open alternative pathways to the manipulation of plasmon propagation and light-matter interactions. Here, we present a comprehensive study of the optical response in T$_d,$-WTe$_2$ by means of density-functional and many-body perturbation theories. We show how monolayer WTe$_2$ with in-plane anisotropy sustains hyperbolic plasmon polaritons, which can be tuned via chemical doping and strain. The latter is able to extend the hyperbolic regime toward the near infrared with low losses. Moreover, with a moderate strain, WTe$_2$ can even be switched between elliptic and hyperbolic regimes. In addition, plasmons in WTe$_2$ are characterized by low losses owing to electron-phonon scattering, which is responsible for the temperature dependence of the plasmon line width. Interestingly, the temperature can also be utilized to tune the in-plane anisotropy of the WTe$_2$ optical response.