Cost-effective Interactive Attention Learning with Neural Attention Processes


الملخص بالإنكليزية

We propose a novel interactive learning framework which we refer to as Interactive Attention Learning (IAL), in which the human supervisors interactively manipulate the allocated attentions, to correct the models behavior by updating the attention-generating network. However, such a model is prone to overfitting due to scarcity of human annotations, and requires costly retraining. Moreover, it is almost infeasible for the human annotators to examine attentions on tons of instances and features. We tackle these challenges by proposing a sample-efficient attention mechanism and a cost-effective reranking algorithm for instances and features. First, we propose Neural Attention Process (NAP), which is an attention generator that can update its behavior by incorporating new attention-level supervisions without any retraining. Secondly, we propose an algorithm which prioritizes the instances and the features by their negative impacts, such that the model can yield large improvements with minimal human feedback. We validate IAL on various time-series datasets from multiple domains (healthcare, real-estate, and computer vision) on which it significantly outperforms baselines with conventional attention mechanisms, or without cost-effective reranking, with substantially less retraining and human-model interaction cost.

تحميل البحث