Online social network has been one of the most important platforms for viral marketing. Most of existing researches about diffusion of adoptions of new products on networks are about one diffusion. That is, only one piece of information about the product is spread on the network. However, in fact, one product may have multiple features and the information about different features may spread independently in social network. When a user would like to purchase the product, he would consider all of the features of the product comprehensively not just consider one. Based on this, we propose a novel problem, multi-feature budgeted profit maximization (MBPM) problem, which first considers budgeted profit maximization under multiple features propagation of one product. Given a social network with each node having an activation cost and a profit, MBPM problem seeks for a seed set with expected cost no more than the budget to make the total expected profit as large as possible. We consider MBPM problem under the adaptive setting, where seeds are chosen iteratively and next seed is selected according to current diffusion results. We study adaptive MBPM problem under two models, oracle model and noise model. The oracle model assumes conditional expected marginal profit of any node could be obtained in O(1) time and a (1-1/e) expected approximation policy is proposed. Under the noise model, we estimate conditional expected marginal profit of a node by modifying the EPIC algorithm and propose an efficient policy, which could return a (1-exp({epsilon}-1)) expected approximation ratio. Several experiments are conducted on six realistic datasets to compare our proposed policies with their corresponding non-adaptive algorithms and some heuristic adaptive policies. Experimental results show efficiencies and superiorities of our policies.