Nebe, Rains and Sloane studied the polynomial invariants for real and complex Clifford groups and they relate the invariants to the space of complete weight enumerators of certain self-dual codes. The purpose of this paper is to show that very similar results can be obtained for the invariants of the complex Clifford group $mathcal{X}_m$ acting on the space of conjugate polynomials in $2^m$ variables of degree $N_1$ in $x_f$ and of degree $N_2$ in their complex conjugates $overline{x_f}$. In particular, we show that the dimension of this space is $2$, for $(N_1,N_2)=(5,5)$. This solves the Conjecture 2 given in Zhu, Kueng, Grassl and Gross affirmatively. In other words if an orbit of the complex Clifford group is a projective $4$-design, then it is automatically a projective $5$-design.