The stability and Hopf bifurcation of the diffusive Nicholsons blowflies model in spatially heterogeneous environment


الملخص بالإنكليزية

In this paper, we consider the diffusive Nicholsons blowflies model in spatially heterogeneous environment when the diffusion rate is large. We show that the ratio of the average of the maximum per capita egg production rate to that of the death rate affects the dynamics of the model. The unique positive steady state is locally asymptotically stable if the ratio is less than a critical value. However, when the ratio is greater than the critical value, large time delay can make the unique positive steady state unstable through Hopf bifurcation. Especially, the first Hopf bifurcation value tends to that of the average DDE model when the diffusion rate tends to infinity. Moreover, we show that the direction of the Hopf bifurcation is forward, and the bifurcating periodic solution from the first Hopf bifurcation value is orbitally asymptotically stable, which improves the earlier result by Wei and Li (Nonlinear. Anal., 60: 1351-1367, 2005).

تحميل البحث