In the emerging world of twisted bilayer structures, the possible configurations are limitless, which enables for a rich landscape of electronic properties. In this paper, we focus on twisted bilayer transition metal dichalcogenides (TMDCs) and study its properties by means of an accurate tight-binding model. We build structures with different angles and find that the so-called flatbands emerge when the twist angle is sufficiently small (around 7.3$^{circ}$). Interestingly, the band gap can be tuned up to a 2.2% (51 meV) when the twist angle in the relaxed sample varies from 21.8$^{circ}$ to 0.8$^{circ}$. Furthermore, when looking at local density of states we find that the band gap varies locally along the moir`e pattern due to the change in the coupling between layers at different sites. Finally, we also find that the system can suffer a transition from a semiconductor to a metal when a sufficiently strong electric field is applied. Our study can serve as a guide for the practical engineering of the TMDCs based optoelectronic devices.