Non-acyclic ${rm SL}_2$-representations of twist knots, $-3$-Dehn surgeries, and $L$-functions


الملخص بالإنكليزية

We study irreducible ${rm SL}_2$-representations of twist knots. We first determine all non-acyclic ${rm SL}_2(mathbb{C})$-representations, which turn out to lie on a line denoted as $x=y$ in $mathbb{R}^2$. Our main tools are character variety, Reidemeister torsion, and Chebyshev polynomials. We also verify a certain common tangent property, which yields a result on the $L$-functions of universal deformations, that is, the orders of the associated knot modules. Secondly, we prove that a representation is on the line $x=y$ if and only if it factors through the $(-3)$-Dehn surgery, and is non-acyclic if and only if the image of a certain element is of order 3. Finally, we study absolutely irreducible non-acyclic representations $overline{rho}$ over a finite field with characteristic $p>2$ to concretely determine all non-trivial $L$-functions $L_{rho}$ of the universal deformations over a CDVR. We show among other things that $L_{rho}$ $dot{=}$ $k_n(x)^2$ holds for a certain series $k_n(x)$ of polynomials.

تحميل البحث