Origin of the quasi-quantized Hall effect in ZrTe5


الملخص بالإنكليزية

The quantum Hall effect (QHE) is traditionally considered a purely two-dimensional (2D) phenomenon. Recently, a three-dimensional (3D) version of the QHE has been reported in the Dirac semimetal ZrTe5. It was proposed to arise from a magnetic-field-driven Fermi surface instability, transforming the original 3D electron system into a stack of 2D sheets. Here, we report thermodynamic, thermoelectric and charge transport measurements on ZrTe5 in the quantum Hall regime. The measured thermodynamic properties: magnetization and ultrasound propagation, show no signatures of a Fermi surface instability, consistent with in-field single crystal X-ray diffraction. Instead, a direct comparison of the experimental data with linear response calculations based on an effective 3D Dirac Hamiltonian suggests that the quasi-quantization of the observed Hall response is an intrinsic property of the 3D electronic structure. Our findings render the Hall effect in ZrTe5 a truly 3D counterpart of the QHE in 2D systems.

تحميل البحث