Applying configurational complexity to the 2D Ruddlesden-Popper crystal structure


الملخص بالإنكليزية

The 2D layered Ruddlesden-Popper crystal structure can host a broad range of functionally important behaviors. Here we establish extraordinary configurational disorder in a two dimensional layered Ruddlesden-Popper (RP) structure using entropy stabilization assisted synthesis. A protype A2CuO4 RP cuprate oxide with five components (La, Pr, Nd, Sm, Eu) on the A-site sublattice is designed and fabricated into epitaxial single crystal films using pulsed laser deposition. By comparing (La0.2Pr0.2Nd0.2Sm0.2Eu0.2)2CuO4 crystals grown under identical conditions but different substrates, it is found that heteroepitaxial strain plays an important role in crystal phase formation. When grown on a near lattice matched substrate, the high entropy oxide film features a T-type RP structure with uniform A-site cation mixing and square-planar CuO4 units, however, growing under strong compressive strain results in a single crystal non-RP cubic phase consistent with a CuX2O4 spinel structure. These observations are made with a range of combined characterizations using X-ray diffraction, atomic-resolution scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray absorption spectroscopy measurements. Designing configurational complexity and moving between 2D layered RP and 3D cubic crystal structures in this class of cuprate materials opens many opportunities for new design strategies related to magnetoresistance, unconventional superconductivity, ferroelectricity, catalysis, and ion transport.

تحميل البحث