Turning bad into good: a water-splitting-active hole transporting material to preserve the performance of perovskite solar cells in humid environments


الملخص بالإنكليزية

Lead halide perovskite-based photoactive layers are nowadays employed for a large number of optoelectronic applications, from solar cells to photodetectors and light-emitting diodes, because of their excellent absorption, emission and charge-transport properties. Unfortunately, their commercialization is still hindered by an intrinsic instability towards classical environmental conditions. Water in particular promotes fast decomposition, leading to a drastic decrease in device performance. An innovative functional approach to overcome this major issue could derive from integrating water-splitting active species within charge extracting layers adjacent to the perovskite photoactive layer, converting incoming water molecules into molecular oxygen and hydrogen before they reach this last one, thus preserving device performance in time. In this work we report for the first time on a perovskite-ancillary layer based on CuSCN nanoplateletes dispersed in a p-type semiconducting polymeric matrix, combining hole extraction/transport properties with good water-oxidation activity, that transforms incoming water molecules and further triggers the in situ p-doping of the conjugated polymer by means of the produced dioxygen, further improving transport of photogenerated charges. This composite layer enables the long-term stabilization of a mixed cation lead halide perovskite within a direct solar cell architecture, maintaining a stable performance for 28 days in high-moisture simulated conditions. Our findings demonstrate that the engineering of a hole extraction layer with water-splitting active additives represent a valuable strategy to mitigate the degradation of perovskite solar cells exposed to atmospheric humidity. A similar approach could be employed in the future to improve stabilities of other optoelectronic devices based on water-sensitive species.

تحميل البحث