Super-Sensitive Quantum Metrology with Separable States


الملخص بالإنكليزية

We introduce a super-sensitive phase measurement technique that yields the Heisenberg limit without using either a squeezed state or a many-particle entangled state. Instead, we use a many-particle separable quantum state to probe the phase and we then retrieve the phase through single-particle interference. The particles that physically probe the phase are never detected. Our scheme involves no coincidence measurement or many-particle interference and yet exhibits phase super-resolution. We also analyze in detail how the loss of probing particles affects the measurement sensitivity and find that the loss results in the generation of many-particle entanglement and the reduction of measurement sensitivity. When the loss is maximum, the system produces a many-particle Greenberger-Horne-Zeilinger (GHZ) state, and the phase measurement becomes impossible due to very high phase uncertainty. In striking contrast to the super-sensitive phase measurement techniques that use entanglement involving two or more particles as a key resource, our method shows that having many-particle entanglement can be counterproductive in quantum metrology.

تحميل البحث