Layered Antiferromagnetism Induces Large Negative Magnetoresistance in the van der Waals Semiconductor CrSBr


الملخص بالإنكليزية

The recent discovery of magnetism within the family of exfoliatable van der Waals (vdW) compounds has attracted considerable interest in these materials for both fundamental research and technological applications. However current vdW magnets are limited by their extreme sensitivity to air, low ordering temperatures, and poor charge transport properties. Here we report the magnetic and electronic properties of CrSBr, an air-stable vdW antiferromagnetic semiconductor that readily cleaves perpendicular to the stacking axis. Below its N{e}el temperature, $T_N = 132 pm 1$ K, CrSBr adopts an A-type antiferromagnetic structure with each individual layer ferromagnetically ordered internally and the layers coupled antiferromagnetically along the stacking direction. Scanning tunneling spectroscopy and photoluminescence (PL) reveal that the electronic gap is $Delta_E = 1.5 pm 0.2$ eV with a corresponding PL peak centered at $1.25 pm 0.07$ eV. Using magnetotransport measurements, we demonstrate strong coupling between magnetic order and transport properties in CrSBr, leading to a large negative magnetoresistance response that is unique amongst vdW materials. These findings establish CrSBr as a promising material platform for increasing the applicability of vdW magnets to the field of spin-based electronics.

تحميل البحث