Systematic study on the role of various higher-order processes in the breakup of weakly-bound projectiles


الملخص بالإنكليزية

The virtual photon theory (VPT), which is based on first-order Coulomb dissociation restricted to the electric dipole ($E1$), has been successfully used to explain the breakup data for several cases. Our aim is to study the role of various higher-order processes that are ignored in the VPT, such as the nuclear breakup, interference between nuclear and Coulomb amplitudes, and multistep breakup processes mainly due to strong continuum-continuum couplings in the breakup of two-body projectiles on a heavy target at both intermediate and higher incident energies. For the purpose of numerical calculations, we employed eikonal version of three-body continuum-discretized coupled-channels (CDCC) reaction model. Our results for the breakup of $^{11}$Be and $^{17}$F on $^{208}$Pb target at 100, 250, and 520 MeV/A, show the importance of nuclear breakup contribution, and its significant role in the multistep processes. The multistep effect on Coulomb breakup for core-neutron projectile was found to be negligible, whereas it was important for core-proton projectile. Coulomb-nuclear interference (CNI) effect was also found to be non-negligible. Quantitatively, the multistep effects due to the nuclear breakup was found to depend on the incident energy through the energy dependence of the core-target and nucleon-target nuclear potentials. The nuclear breakup component, the CNI effect, and the multistep breakup processes are all found to be non-negligible; hence, the assumptions adopted in the VPT for the accurate description of breakup cross sections are not valid.

تحميل البحث