Semi-closed form prices of barrier options in the time-dependent CEV and CIR models


الملخص بالإنكليزية

We continue a series of papers where prices of the barrier options written on the underlying, which dynamics follows some one factor stochastic model with time-dependent coefficients and the barrier, are obtained in semi-closed form, see (Carr and Itkin, 2020, Itkin and Muravey, 2020). This paper extends this methodology to the CIR model for zero-coupon bonds, and to the CEV model for stocks which are used as the corresponding underlying for the barrier options. We describe two approaches. One is generalization of the method of heat potentials for the heat equation to the Bessel process, so we call it the method of Bessel potentials. We also propose a general scheme how to construct the potential method for any linear differential operator with time-independent coefficients. The second one is the method of generalized integral transform, which is also extended to the Bessel process. In all cases, a semi-closed solution means that first, we need to solve numerically a linear Volterra equation of the second kind, and then the option price is represented as a one-dimensional integral. We demonstrate that computationally our method is more efficient than both the backward and forward finite difference methods while providing better accuracy and stability. Also, it is shown that both method dont duplicate but rather compliment each other, as one provides very accurate results at small maturities, and the other one - at high maturities.

تحميل البحث