Phase retrieval of complex-valued objects via a randomized Kaczmarz method


الملخص بالإنكليزية

This paper investigates the convergence of the randomized Kaczmarz algorithm for the problem of phase retrieval of complex-valued objects. While this algorithm has been studied for the real-valued case}, its generalization to the complex-valued case is nontrivial and has been left as a conjecture. This paper establishes the connection between the convergence of the algorithm and the convexity of an objective function. Based on the connection, it demonstrates that when the sensing vectors are sampled uniformly from a unit sphere and the number of sensing vectors $m$ satisfies $m>O(nlog n)$ as $n, mrightarrowinfty$, then this algorithm with a good initialization achieves linear convergence to the solution with high probability.

تحميل البحث