In some cases, the function of a lesioned area can be compensated for by another area. However, it remains unpredictable if and by which other area a lesion can be compensated. We assume that similar incoming and outgoing connections are necessary to encode the same function as the damaged region. The similarity can be measured both locally using the matching index and looking at a more global scale by non-metric multidimensional scaling (NMDS). We tested how well both measures can predict the compensating area for the loss of the visual cortex in kittens. For this case study, the global comparison of connectivity turns out to be a better method for predicting functional compensation. In future studies, the extent of the similarity between the lesioned and compensating regions might be a measure of the extent to which function can be successfully recovered.