Infrared fixed points of gauge theories provide intriguing targets for the modern conformal bootstrap program. In this work we provide some preliminary evidence that a family of gauged fermionic CFTs saturate bootstrap bounds and can potentially be solved with the conformal bootstrap. We start by considering the bootstrap for $SO(N)$ vector 4-point functions in general dimension $D$. In the large $N$ limit, upper bounds on the scaling dimensions of the lowest $SO(N)$ singlet and traceless symmetric scalars interpolate between two solutions at $Delta =D/2-1$ and $Delta =D-1$ via generalized free field theory. In 3D the critical $O(N)$ vector models are known to saturate the bootstrap bounds and correspond to the kinks approaching $Delta =1/2$ at large $N$. We show that the bootstrap bounds also admit another infinite family of kinks ${cal T}_D$, which at large $N$ approach solutions containing free fermion bilinears at $Delta=D-1$ from below. The kinks ${cal T}_D$ appear in general dimensions with a $D$-dependent critical $N^*$ below which the kink disappears. We also study relations between the bounds obtained from the bootstrap with $SO(N)$ vectors, $SU(N)$ fundamentals, and $SU(N)times SU(N)$ bi-fundamentals. We provide a proof for the coincidence between bootstrap bounds with different global symmetries. We show evidence that the proper symmetries of the underlying theories of ${cal T}_D$ are subgroups of $SO(N)$, and we speculate that the kinks ${cal T}_D$ relate to the fixed points of gauge theories coupled to fermions.