On the Cauchy problem for Boltzmann equation modelling a polyatomic gas


الملخص بالإنكليزية

In the present manuscript we consider the Boltzmann equation that models a polyatomic gas by introducing one additional continuous variable, referred to as microscopic internal energy. We establish existence and uniqueness theory in the space homogeneous setting for the full non-linear case, under an extended Grad assumption on transition probability rate, that comprises hard potentials for both the relative speed and internal energy with the rate in the interval $(0,2]$, which is multiplied by an integrable angular part and integrable partition functions. The Cauchy problem is resolved by means of an abstract ODE theory in Banach spaces, for an initial data with finite and strictly positive gas mass and energy, finite momentum, and additionally finite $k_*$ polynomial moment, with $k_*$ depending on the rate of the transition probability and the structure of a polyatomic molecule or its internal degrees of freedom. Moreover, we prove that polynomially and exponentially weighted Banach space norms associated to the solution are both generated and propagated uniformly in time.

تحميل البحث